Advancing the Application of Next Generation Science to Make Safety **Decisions**

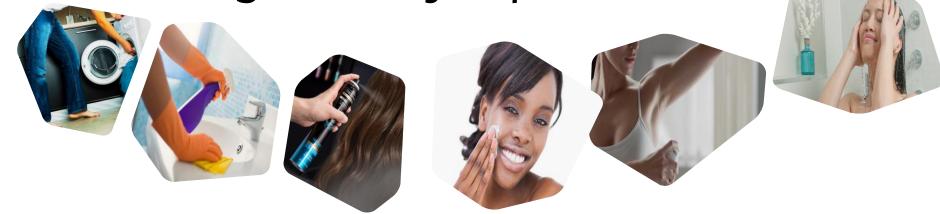
DR Maria Baltazar,

Safety Science Capability Lead Unilever Safety, Environmental & Regulatory Science, UK

Outline

- Introduction to Next generation risk assessment (NGRA)
- Unilever approach to developing an early tier NAM-systemic toolbox and workflow
- Application of NGRA principles to case studies

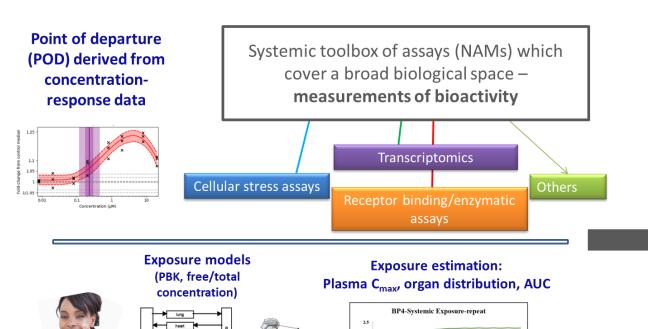
Our Purpose is to use leadingedge Science & Data to:



The objective of a consumer product risk assessment is...

Can we safely use **x**% of ingredient **y** in product **z**?

All safety assessments of cosmetic ingredients are exposure-driven:


Introduction to Next generation risk assessment (NGRA)

NGRA is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates New Approach Methodologies (NAMs) to assure safety without the use of animal testing¹

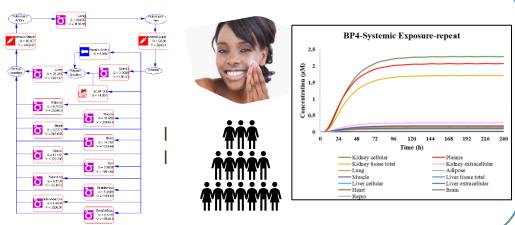
New approach methodologies (NAMs)² can be defined as any *in vitro*, *in chemico* or computational (*in silico*) method that when used alone, or in concert with others, enables improved chemical safety assessment through more protective and/or relevant models and as a result, contributes to the replacement of animals.

An approach to Next Generation Risk Assessment – Protection of human health

(Wn) 1.5

If there is no bioactivity observed at consumerrelevant concentrations, there can be no adverse health effects.

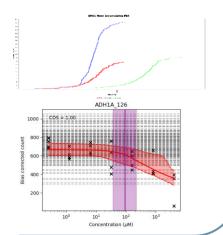
Calculation of **Bioactivity exposure** ratio (BER)


The BER is defined as the ratio between the POD and the relevant exposure metric

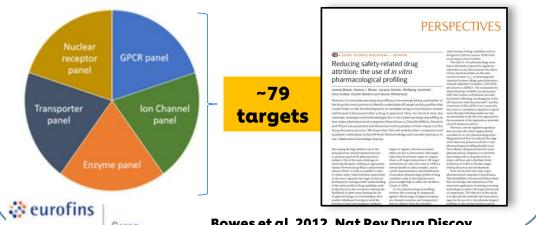
If there <u>is bioactivity</u> observed at consumer-relevant concentrations -> is it adverse?

Our Key NAMs

Internal exposure - PBK modelling



Moxon TE et al., 2020. Toxicology In Vitro, 63, 104746


High-Throughput transcriptomics (HTTr)

- TempO-seq technology full gene panel
- 24hr exposure
- 7 concentrations
- Various cell models (e.g. HepG2, MCF7, HepaRG)
- Dose-response analysis using **BMDExpress2** and BIFROST model

Reynolds et al. 2020. Comp Tox 16: 100138 Baltazar et al. 2020. Toxicol Sci 176(1): 236-

In vitro pharmacological profiling

Bowes et al. 2012. Nat Rev Drug Discov 11(12): 909-22

Cell stress panel (CSP)

- 36 biomarkers covering 10 cell stress pathways
- HepG2
- 24hr exposure
- 8 concentrations
- Dose-response analysis using BIFROST model

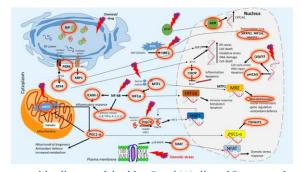
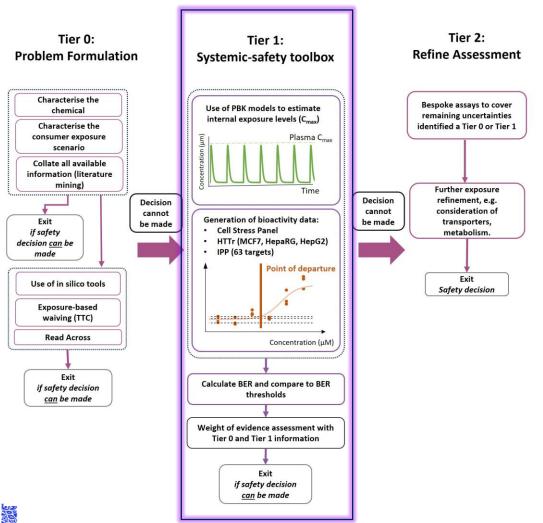
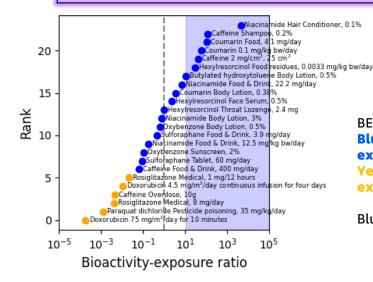



Image kindly provided by Paul Walker (Cyprotex)


Hatherell et al. 2020. Toxicol Sci 176(1): 11-33

Our approach for systemic toxicity – A NAM toolbox and workflow

NAM Systemic toolbox provides similar level of protection as traditional approaches for a total of 48 chemicals and 100 chemical exposure scenario

BER=lowest POD/Plasma Cmax
Blue: low risk chemical-

exposure scenario

Yellow: high risk chemicalexposure scenario

Blue shaded region BER> 11

Making Safety Decisions for a Sunscreen Active Ingredient Using Next-Generation Risk Assessment: Benzophenone-4 Case Study

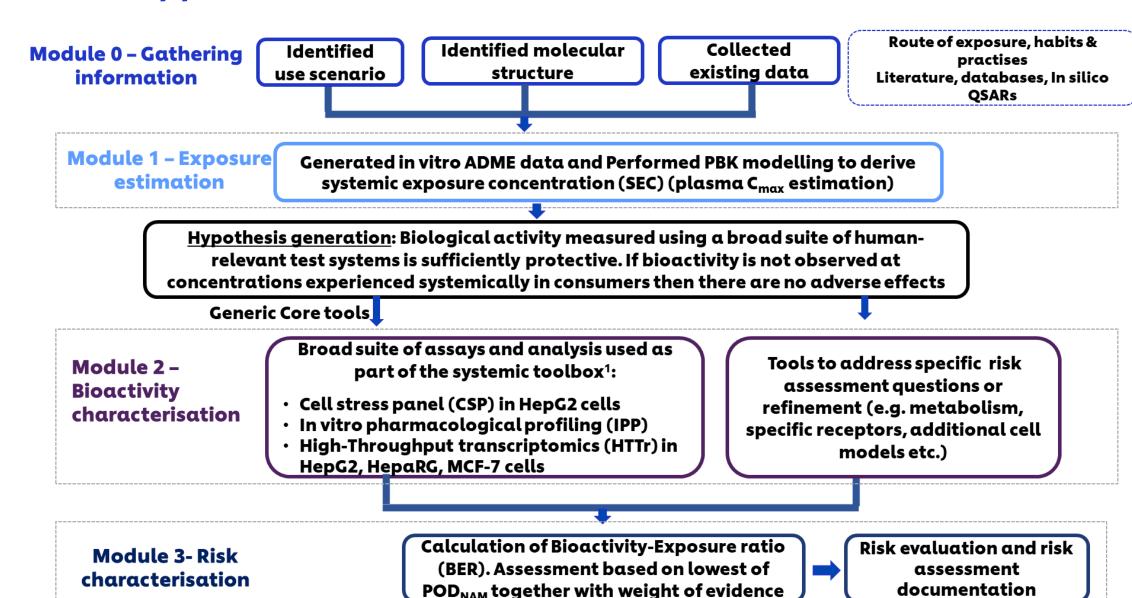
https://www.altex.org/index.php/altex/ar ticle/view/2934/version/2996

Benzophenone-4 (BP-4) case study: Introduction

- In 2019, the European Commission defined a list of 28 cosmetic ingredients with potential endocrine activity
- BP-4 is one of the 28 chemicals for which the call for data took place
- BP-4 is an **UV-filter ingredient used in sunscreen cosmetics** to prevent sunburns or photodegradation by inhibiting the infiltration of UV light

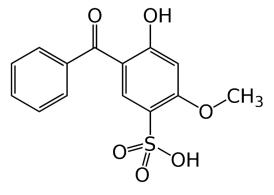
CAS No. 4065-45-6; EC No. 223-772-2; sulisobenzone; 2-Hydroxy-4methoxybenzophenone-5sulphonic acid)

Objective of the case study:


- To assess whether a tiered NGRA approach is sufficiently protective and also useful to answer a real-life question
- For the purposes of this exercise, it has been assumed that **no** in vivo animal data exist on the ingredient and no read-across
- Focus on systemic toxicity (excluding genetic toxicity or DART) using NAMs

Is Benzophenone-4 safe in a sunscreen product at the maximum approved level of 5%?

Tiered approach to risk assessment



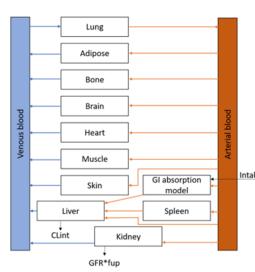
Module 0 - Gathering information

Identified use scenario Identified molecular structure

Collected existing data Route of exposure, habits & practises Literature, databases, In silico QSARs

- •Tools used: DEREK Nexus, METEOR Nexus, OECD Toolbox, TIMES, OPERA, VEGA
- ·Results:
 - Benzophenone-4 did not trigger many alerts within the tools used.
 - ·Benzophenone-4 triggered one potential alert for estrogen receptor binding in the VEGA profiler, however this was not consistent across other profilers that also assess estrogen receptor activity.

Module 1: steps to estimate internal exposure


Exposure scenario (applied dose)

- 5% in Sunscreen product,
- 18g/day, two times, 9g/application (as per SCCS notes of guidance)
- On body and face 17500cm2 (total body area)

ADME data for model building

Core model input:

- Absorption (dermal in case of BP-4)
- Partition coefficients, fraction unbound, blood:plasma ratio
- Liver metabolism
- Passive renal excretion (glomerular filtration rate * fraction unbound)

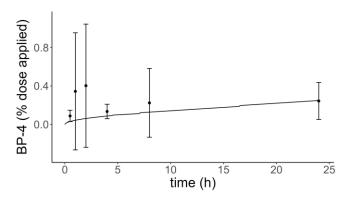
Advanced input (when needed):

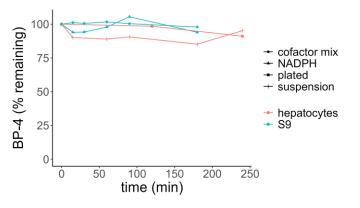
- PAMPA permeability
- Transporter kinetics transfected cell lines

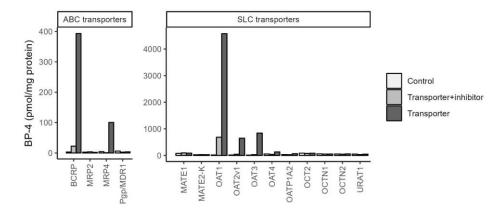
Population simulation

Population of 50% females and 50% males, an age variation between 16 and 70 years, and a body weight range between 45-85 kg.

Software: GastroPlus 9.7







Module 1: Key ADME findings

- Limited dermal absorption (0.4%)
- Stable in primary human hepatocytes and S9 fraction (liver metabolism is negligible)
- BP-4 is a substrate of OAT1, OAT2, OAT3, BCRP, and MRP4 which indicates BP-4 is mainly secreted.
- In contrast, BP-4 was not found to be a substrate of transporters involved in reabsorption (movement from urine to blood).
- Limited membrane permeability (from PAMPA assay)

Module 1: plasma Cmax prediction for the population

- Mean population plasma Cmax of 0.9 µM (5th and 95th percentile of 0.4 and **1.24** µM, respectively)
- The influx rates of OAT1, OAT2, and OAT3 were higher than the efflux rates of BCRP and MRP4, leading to substantial concentrations within the liver (0.23 μ M) and kidney (0.17 μ**M**).
- Limited distribution to any other organ

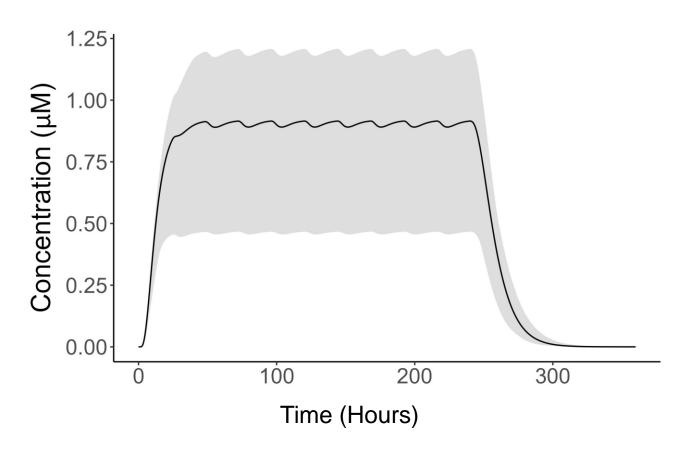


Figure. Population PBK simulation results (time course data and C_{max}) on benzophenone-4 concentrations in plasma after repeated exposure of body lotion 18g/day, i.e., 9g two times per day for a period of 10 days, with 5% benzophenone-4, on the whole body.

Problem formulation after collating existing information and exposure estimation

Hypothesis

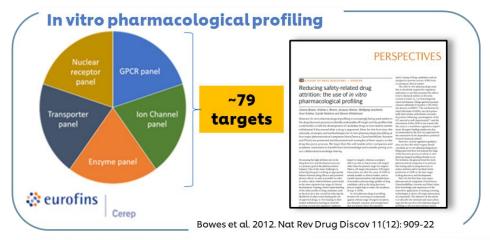
BP-4 could bind to estrogen receptor (VEGA in silico tool flagged a potential binding to estrogen receptor)

- Cell models previously tested (HepG2, HepaRG and MCF-7) might lack the transporters involved in BP-4 organ distribution
- Potential underestimation of bioactivity
- BP-4 distribution to only kidney and liver
- Absence of in silico alerts ≠ no toxicity

Testing strategy

In vitro CALUX® EATS (estrogenic, androgenic, thyroidogenic and steroidogenesis)

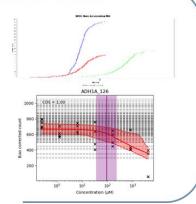
- Literature review of cell lines expressing the key transporters
- Addition of a primary proximal tubule cell model to evaluate BP-4 bioactivity.
- Test a systemic toolbox using non targeted (transcriptomics, cell stress panel) & targeted NAMs (in vitro pharmacological profiling)



Module 2 – Bioactivity characterisation

Broad suite of assays and analysis used as part of the systemic toolbox:

- Cell stress panel (CSP) in HepG2 cells
- In vitro pharmacological profiling (IPP)
- High-Throughput transcriptomics (HTTr) in HepG2, HepaRG, MCF-7 cells


Tools to address specific risk assessment questions or refinement (e.g. metabolism, specific receptors, additional cell models etc.)

High-Throughput transcriptomics (HTTr)

- · TempO-Seq technology full gene panel
- · 24hr exposure
- 7 concentrations
- · Various cell models (e.g. HepG2, MCF7, HepaRG)
- · Dose-response analysis using BMDExpress2 and BIFROST model

Reynolds et al. 2020. Comp Tox 16: 100138 Baltazar et al. 2020. Toxicol Sci 176(1): 236-252

Cell stress panel (CSP)

- · 36 biomarkers covering 10 cell stress pathways
- HepG2
- 24hr exposure
- 8 concentrations
- Dose-response analysis using BIFROST model

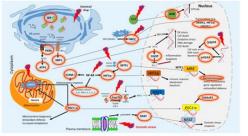


Image kindly provided by Paul Walker (Cyprotex)

Hatherell et al. 2020. Toxicol Sci 176(1): 11-33

Module 2 - Bioactivity characterisation

Broad suite of assays and analysis used as part of the systemic toolbox:

- Cell stress panel (CSP) in HepG2 cells
- In vitro pharmacological profiling (IPP)
- High-Throughput transcriptomics (HTTr) in HepG2, HepaRG, MCF-7 cells

Tools to address specific risk assessment questions or refinement (e.g. metabolism, specific receptors, additional cell models etc.)

EATS activity: estrogenic, androgenic, thyroidogenic and steroidogenesis

- CALUX bioassays to measure transcriptional activation and binding assays:
 - U2-OS incorporating the firefly luciferase reporter gene coupled to Responsive Elements (REs)
 - ERα, AR, TTR-TRβ- and hTPO
- In vitro H295R Steroidogenesis Assay (H295R) utilises human adenocarcinoma cell line NCI-H295R. Quantification of 17\u03b3-estradiol and Testosterone is performed using the AR CALUX and ERα CALUX bioassays
- 12 concentrations. Calculation of AC50, LOEC and NOEC

Renal Toxicity

Renal biomarkers (3 donors, duplicate per donor), 8 concentrations, 24h and 72h timepoints in primary proximal tubule cell:

Newcells aProximate™ platform

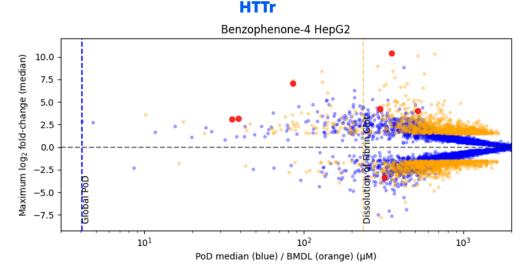
- KIM-1
- NGAL
- Clusterin
- TEER (Day 0 and Day 3)
- **ATP**
- LDH
- Toxicogenomics (3 donors, 2 duplicates per donor), 8 concentrations, 24h and 72h timepoints
- Omeprazole and cisplatin added as benchmarks/positive controls

Piyush Bajaj et al. 2020. Toxicology. 442, 152535

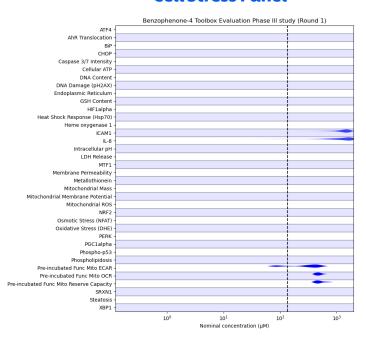
Key Results & Deriving Points of Departure (PODs)

HTTr (HepG2, HepaRG, MCF7, PTC)

- Two approaches to calculating POD BIFROST (gene level HepG2, 4.2 µM) and BMDL (pathway level HepG2, 240 µM)
- Significantly lower bioactivity was detected in kidney cells (gene level: 320 µM). No pathways formed


Cell Stress Panel

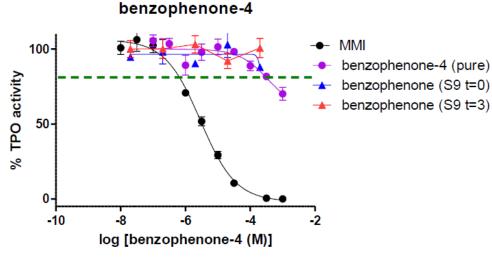
Global POD_{NAM} = 140 µM


In vitro Pharmacological profiling

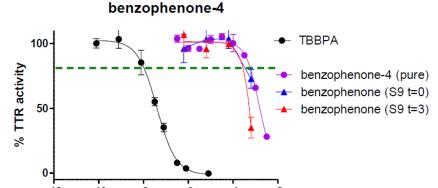
- Tested up to 10 µM
- ~83 targets compiled by Cosmetics Europe Safety pharmacology WG
- No hits

Cell Stress Panel

Key Results & Deriving Points of Departure (PoDs)


Calux assays

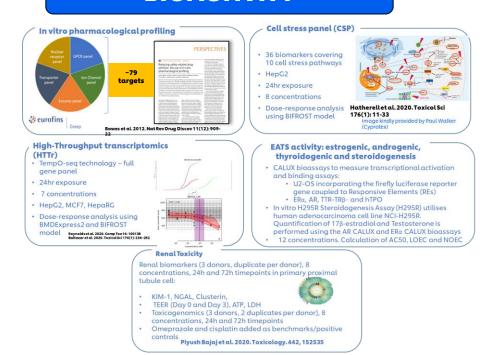
- No agonism or antagonism of ER, AR or TR and no effect on production of oestrogens or androgens ±S9
- Activity towards hTPO and TTR was found at high concentrations (LOEC= 300-600 µM).

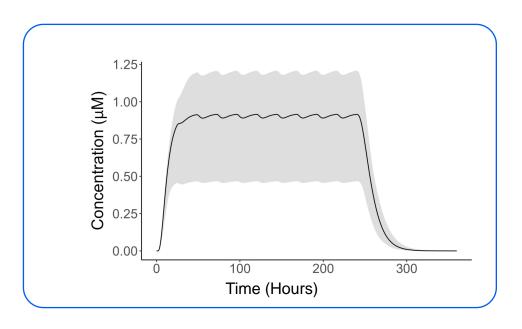

Renal biomarkers (PTC)

- No significant response for BP-4
- Positive controls (Cisplatin and Omeprazole gave expected dose-response at 72-h)

hTPO inhibition assay results

TTR-TRβ assay results


log [benzophenone-4 (M)]


Module 3- Risk characterisation

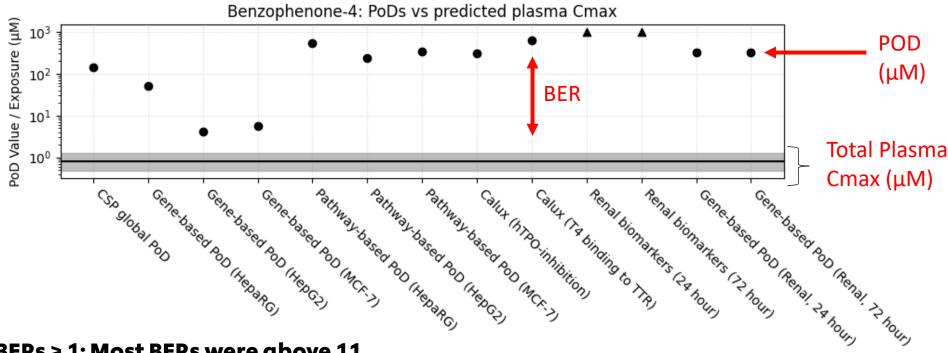
BIOACTIVITY

Identify lowest (most sensitive) point of departure, expressed in µM

EXPOSURE

Identify realistic worst-case plasma exposure (C_{max}) expressed as µM

> The bigger the BER, the greater the confidence that bioactivity will not occur in exposed consumers



BIOACTIVITY EXPOSURE RATIO =

BIOACTIVITY

EXPOSURE

Bioactivity: exposure ratio calculation: BER ranging from 3.3-496

- All BERs > 1; Most BERs were above 11
- Lowest BER (3.4): PODs was obtained from HTTr in HepG2 cells when the BIFROST method was used (POD of 4.2 μ M). BER obtained from pathway level POD was 189.

Highest BER (496): PODNAM derived from the Calux assay (T4 binding to TTR).

Conclusions & reflections

NAM-based assessment for 5% inclusion of BP-4

Lowest BER= 3.3 **BER range= 3.3-496**

Conclusion

Low risk considering weight of evidence and model/PoD relevance

Traditional animal assessment for 5% inclusion of BP-4

NOAEL= 1239 mg/kg bw/day

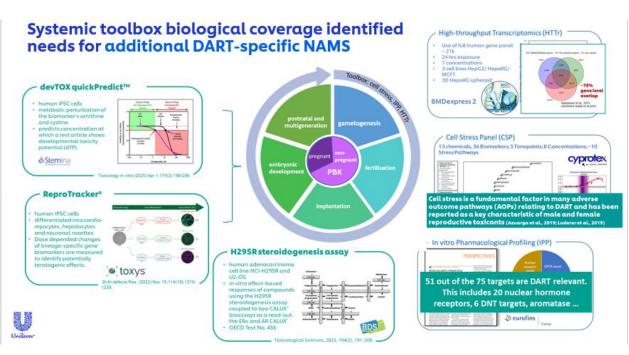
Adjusted for oral absorption= 620 mg/kg bw/day

Exposure= 0.069 mg/kg bw/d

Margin of Safety (MoS)= 8986

Conclusion

Low risk - MoS >> 100


(SCCS opinion)

NAM-based risk assessments are in generally more conservative than traditional approaches

- Middleton et al. (2022) Toxicol Sci (https://doi.org/10.1093/toxsci/kf ac068)
- Reardon A et al., 2023 https://doi.org/10.3389/ftox.2023. 1194895
- Zobl et al., 2023 http://dx.doi.org/10.14573/altex.2 309081
- Paul-Friedman K et al., 2020: https://doi.org/10.1093%2Ftoxsci %2Fkfz201
- Baltazar MT et al., 2020: http://dx.doi.org/10.1093/toxsci/k faa048
- Ebmeyer et al., 2024: https://doi.org/10.3389/fphar.202 4.1345992
- Cable et al., 2025: https://doi.org/10.1093/toxsci/kfa e159

Other research areas: DART & Complex in vitro models

Muller et al., accepted for publication

Establishing human liver microphysiological coculture system for higher throughput chemical safety assessment BROWN

Aim: to develop 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of human liver biology and metabolism.

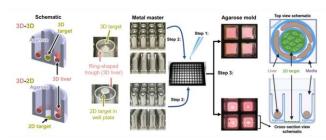



Figure. Schematic of 3D co-culture in agarose gel moulds, showing 3D toroid of HepaRG cells on the outer ring and 2D AR-CALUX cells as a target for metabolites in the centre of the mould.

Key characteristics of the system:

- · Culture medium and compounds freely diffuse between the 2 chambers
- · 3D HepaRG function and phenotype:
 - · Robust protein expression of liver biomarkers (albumin, asialoglycoprotein receptor, Phase I cytochrome P450 [CYP3A4] enzyme, MPR2, and glycogen), and exhibited Phase I/II enzyme activities over the course of 17 days

Ip et al.,2024. https://doi.org/10.1093/toxsci/kfae018;

Conclusions & reflections

- Case studies have demonstrated it is possible to integrate exposure estimates and bioactivity points of departure to make a safety decision.
- These case studies showed that the approach is exposure-led and follows a tiered approach for both exposure and bioactivity
 - Bespoke NAMs can be added to the NGRA to fill gaps identified along the process
- 'Early tier' in vitro screening tools show promise for use in a protective rather than predictive capacity.
- NGRA requires a mindset shift and a multidisciplinary team!

Acknowledgements

Matt Dent

Sophie Cable

Hequn Li

Nicky Hewitt

Beate Nicol

Joe Reynolds

Sophie Malcomber

Sharon Scott

Jade Houghton

Predrag Kukic

Andrew White

Richard Cubberley

Sandrine Spriggs

Ruth Pendlington

Katie Przybylak

Alistair Middleton

BP4 Consortium

Cosmetics Europe/LRSS Case study Leaders Team

Pharmacelsus

Eurofins

BioClavis

Cyprotex

SOLVO

BioDetection Systems

NewCells

seac.unilever.com

