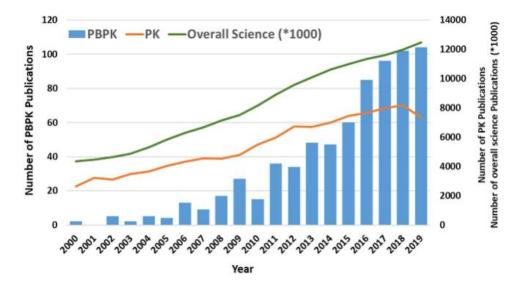
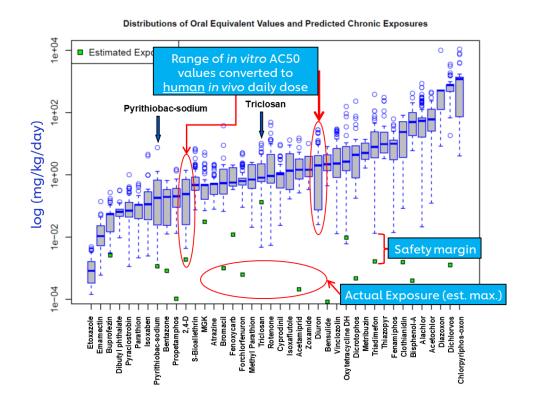

Building confidence in PBK modelling in Next Generation Risk Assessment for systemic toxicity


Dawei Tang and Ans Punt

Dawei.Tang@unilever.com

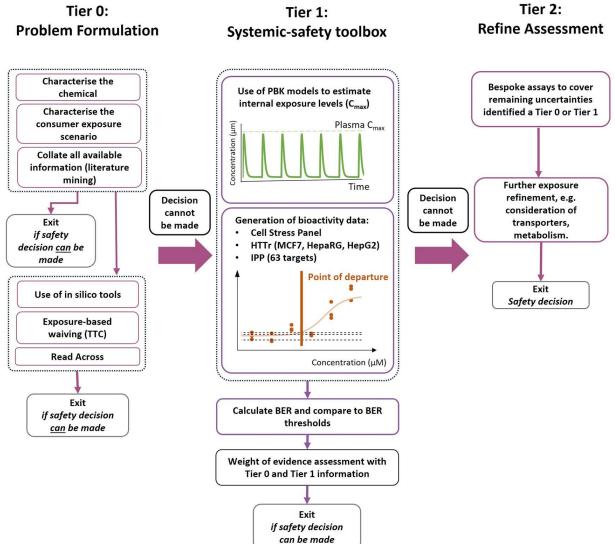
Applications of PBK modelling


- Species differences in kinetics
- Simulating special populations and interindividual human variation
- Chemical interactions like drug-drug or drug-food interactions
- High-to low-dose extrapolations
- Route-to-route extrapolations (e.g. oral to inhalation)
- Interpretation of human biomonitoring studies
- Quantitative in vitro-in vivo extrapolations
 (QIVIVE) in non-animal testing strategies

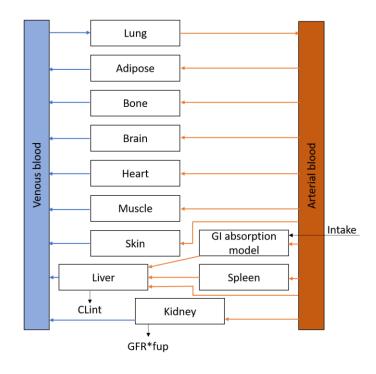
Number of PBPK publications (El-Khateeb et al, Biopharmaceutics & Drug Disposition 42.4 (2021): 107-117,)

NGRA: an exposure-led and hypothesis-driven approach for protective decision making

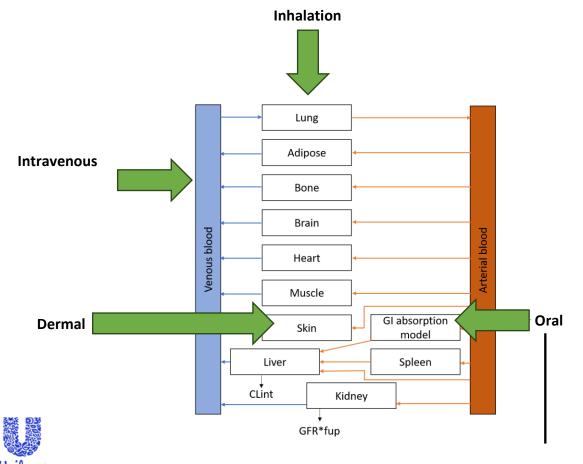
Rotroff, et al. Toxicological Sciences 117.2 (2010): 348-358.



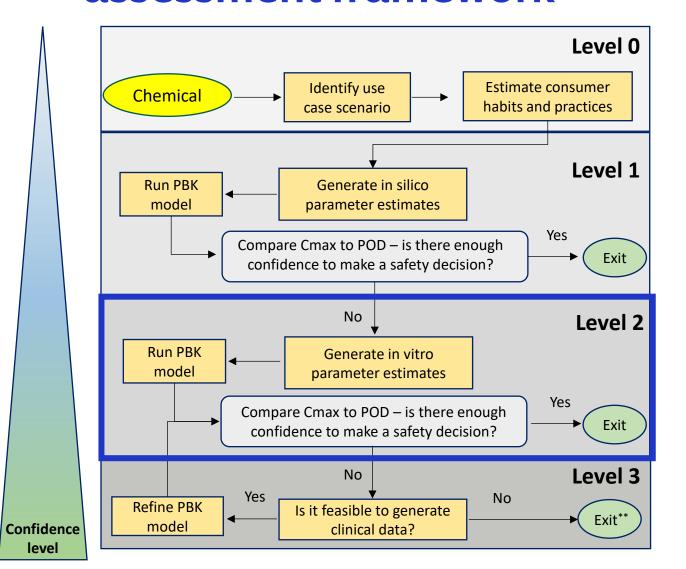
If there is **no** bioactivity observed at consumerrelevant concentrations, there is unlikely to be any adverse health effects.


If there **is** bioactivity observed at consumerrelevant concentrations, follow up testing is required to determine whether that could result in an adverse effect

NGRA toolbox for systemic toxicity at Unilever


PBK modelling key in Tier 1 to understand internal exposure in relation to in vitro bioactivity data

PBK modelling in NGRA


Physiologically based kinetic (PBK) models are used to simulate the behaviour of a chemical in the body for a given exposure scenario.

- PBK models are composed of multiple coupled ordinary differential equations.
- The model have various parameters that need to be determined.
- Example equation for determining the concentration of chemical in the liver:

$$V_{\text{Liver}} \frac{dC_{\text{Liver}}}{dt} = Q_{\text{Liver}} \left(C_{\text{Arterial}} - \frac{C_{\text{Liver}}}{P_{\text{Liver}}} \right) - CLint \left(\frac{C_{\text{Liver}}}{P_{\text{Liver}}} * Fup \right)$$
[Concentration of chemical in the arterial blood] [Concentration of chemical in the liver] [Concentration of chemical in the liver] [Concentration of chemical in the liver]

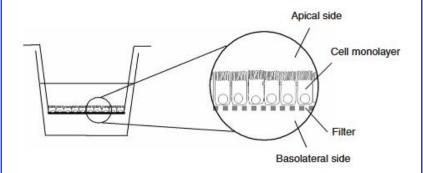
Parameterisation of PBK models within a tiered risk assessment framework

level

PBK parameterisation levels

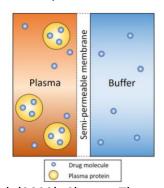
Level 1: Chemical-specific parameters informed using in silico predictions (e.g., using e.g., QSAR models)

Level 2: Some chemical-specific parameters informed using in vitro data


Level 3: Some chemical-specific parameters are inferred by calibrating model against existing human PK data for the same chemical (by a different exposure scenario.

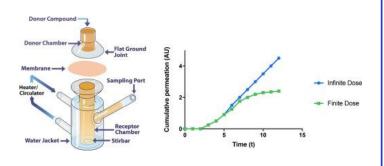
> ** While further refinement of the PBK model may not be possible, refinement of the bioactivity/POD estimates using higher tier tools (e.g., micro physiological systems) should be considered.

Figure adapted from Moxon et al., 2020. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicology in Vitro, 63, p.104746.


In vitro and in silico methods to parameterize PBK models

Caco-2 model for intestinal absorption

e.g. Hubatsch et al (2007), Nature Protocols 2, 2111-2119


Plasma protein binding

e.g. Hann et al. (2022), Chapter Three - The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate.

Book: Progress in Medicinal Chemistry, pp. 163 - 214

Skin absorption (Franz cell)

e.g. Lane (2024), European Journal of Pharmaceutical Sciences 201, 106873

Partition coefficients (in silico based on logP and pKa)

$$extit{Kpu} = egin{bmatrix} f_{EW} + \left(rac{1+X}{1+Y} \cdot f_{IW}
ight) \\ + \left(rac{(P \cdot f_{NL} + ((0.3P+0.7) \cdot f_{NP}))}{1+Y}
ight) \\ + \left(rac{Ka \cdot [AP^-]_T \cdot X}{1+Y}
ight) \end{bmatrix}$$

e.g. Rodgers and Rowland (2006), *Journal of Pharmaceutical Sciences* 95, 1238-1257

Metabolic clearance (hepatocytes, S9 or microsomes)

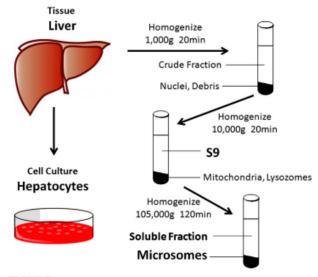
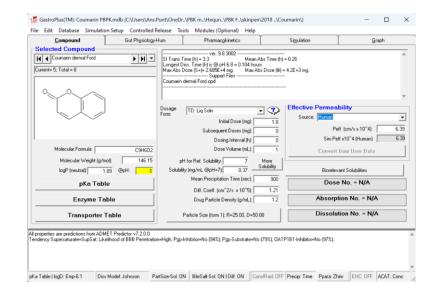


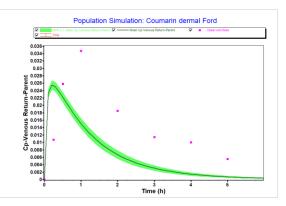
FIGURE 3.6 Preparation of microsomal, S9, and soluble fractions commonly used in drug metabolism studies.

e.g. Vrbanac and Slauter (2016), ADME in Drug Discovery. Book: A Comprehensive Guide to Toxicology in Nonclinical Drug Development, pp. 39-67

Example exposure scenarios

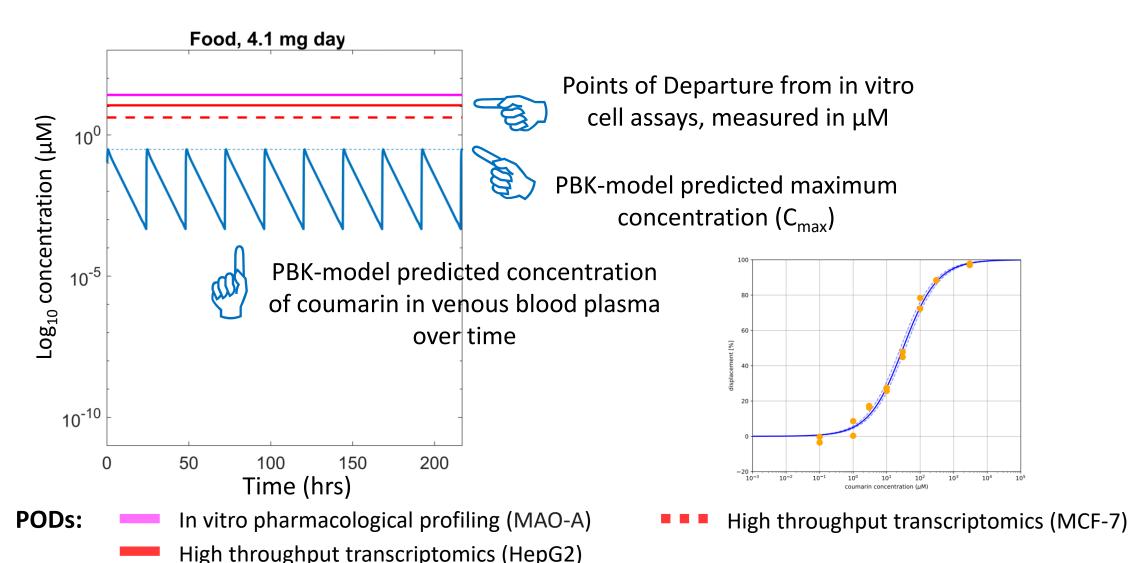

Coumarin (flavouring and fragrance, naturally present in e.g. cinnamon)

Compound	Use Scenario	Exposure route	Risk classification
Coumarin	Dietary intake, 4.1	Oral	Low risk
	mg/day		

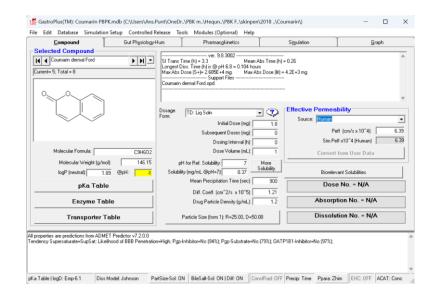


Example: exposure to coumarin through oral dietary intake

Parameter	Value	Source	Level
Molecular weight (g/mol)	147.1		
Log P	1.89	ADMET predictor	L1
	1.39	Measured ¹	L2
Hepatic intrinsic	105	ADMET predictor	L1
clearance (L/h)	929	Measured	L2
Unbound fraction in plasma (f _{up})	0.24	ADMET predictor	L1
	0.31	Measured ²	L2
Blood: plasma ratio	1.08	ADMET predictor	L1
	0.7	Measured ²	L2

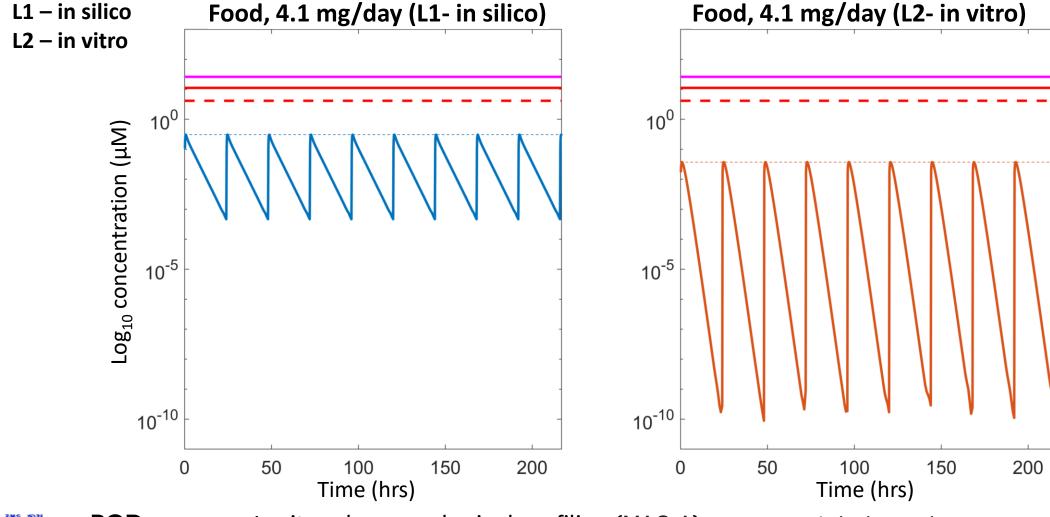


- 1. Hansch, C., Leo, A., & Hoekman, D. (1995) Exploring QSAR: Hydrophobic, electronic, and steric constants (Vol. 2). American Chemical Society.
- 2. Moxon, T.E., et al (2020). Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicol In Vitro, 63, 104746


Example: exposure to coumarin through oral dietary intake (BER>1)

Example: exposure to coumarin through oral dietary intake

Parameter	Value	Source	Level
Molecular weight	147.1		
(g/mol)			
Log P	1.89	ADMET predictor	L1
	1.39	Measured ¹	L2
Hepatic intrinsic	105	ADMET predictor	L1
clearance (L/h)	929	Measured	L2
Unbound fraction in	0.24	ADMET predictor	L1
plasma (f _{up})			
	0.31	Measured ²	L2
Blood: plasma ratio	1.08	ADMET predictor	L1
	0.7	Measured ²	L2



Parameter	Value	Source	Level
Molecular weight (g/mol)	147.1		
Log P	1.89	ADMET predictor	L1
	1.39	Measured ¹	L2
Hepatic intrinsic	105	ADMET predictor	L1
clearance (L/h)	929	Measured	L2
Unbound fraction in	0.24	ADMET predictor	L1
plasma (f _{up})			
	0.31	Measured ²	L2
Blood: plasma ratio	1.08	ADMET predictor	L1
	0.7	Measured ²	L2

- 1. Hansch, C., Leo, A., & Hoekman, D. (1995) *Exploring QSAR: Hydrophobic, electronic, and steric constants* (Vol. 2). American Chemical Society.
- 2. Moxon, T.E., et al (2020). Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicol In Vitro, 63, 104746

Example: exposure to coumarin through oral dietary intake

PODs:

In vitro pharmacological profiling (MAO-A)

High throughput transcriptomics (HepG2)

High throughput transcriptomics (MCF-7)

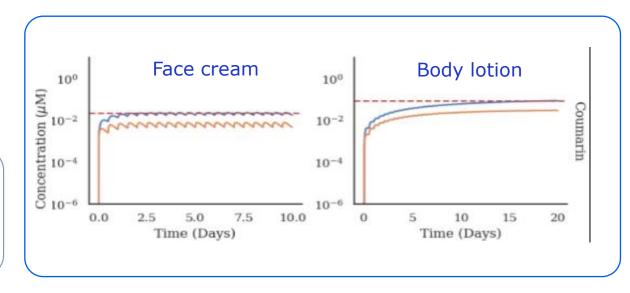
Risk Assessment Outcome

BIOACTIVITY

High-Throughput transcriptomics (HTTr)

- · TempO-seek technology full gene panel
- 24hr exposure
- 7 concentrations
- Various cell models (e.g. HepG2, MCF7, HepaRG)
- · Dose-response analysis using BMDExpress2 and BIFROST

Reynolds et al. 2020. Comp Tox 16: 100138 Baltazar et al. 2020. Toxicol Sci 176(1): 236–252


- 36 biomarkers covering 10 cell stress pathways
- HepG2
- 24hr exposure
- 8 concentrations
- Dose-response analysis using BIFROST model

Hatherell et al. 2020. Toxicol Sci 176(1): 11-33

Image kindly provided by Paul Walker

EXPOSURE

Identify realistic worst-case plasma exposure (C_{max})

expressed as µM

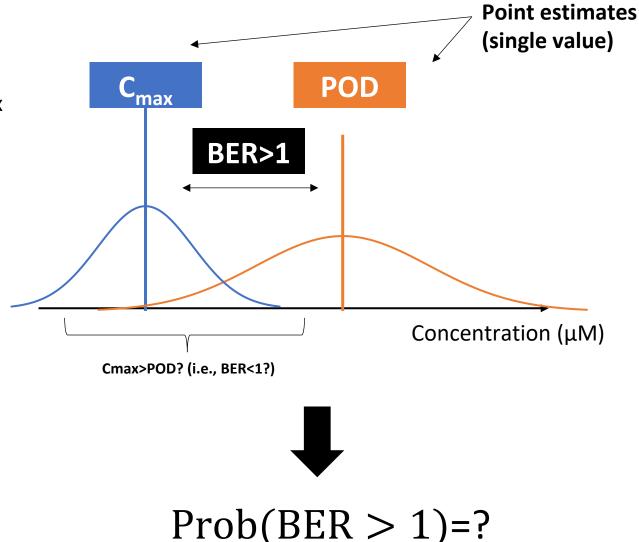
Identify lowest (most sensitive) point of departure,

expressed in µM

BIOACTIVITY

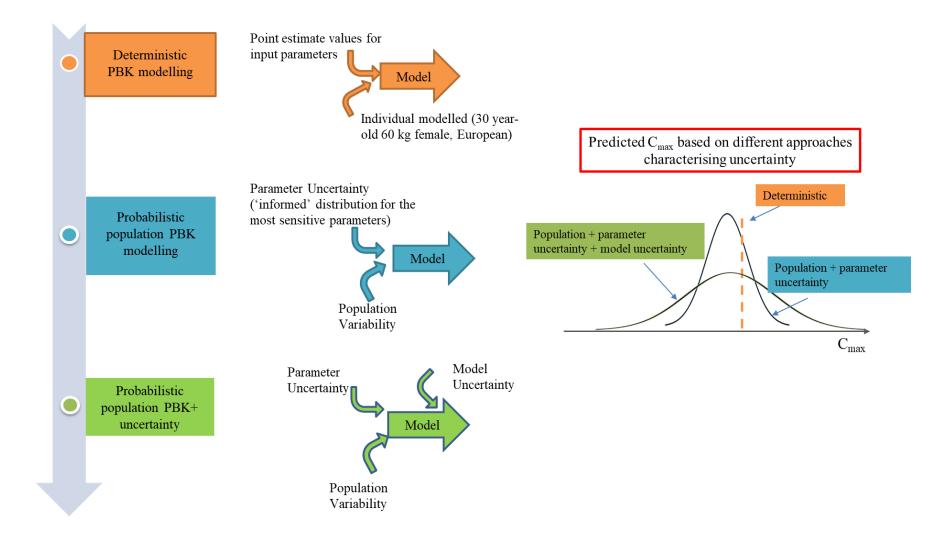
EXPOSURE

The bigger the BER, the greater the confidence that bioactivity will not occur in exposed consumers



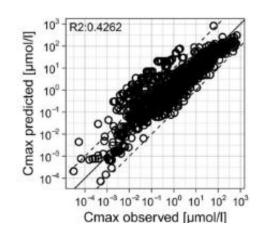
BIOACTIVITY EXPOSURE RATIO =

Uncertainty quantification and decision making

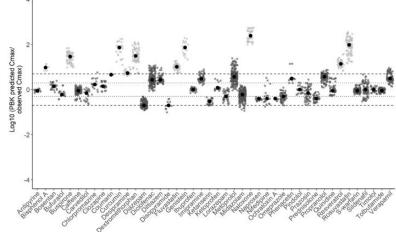

Why do we care about quantifying uncertainty?

- In this example, using point estimates results in Cmax appearing below the POD (i.e., the BER>1).
- The true values of both metrics are subject to uncertainty.
- These uncertainties can be captured in terms of distributions.
- The distributions show the range of plausible values for the Cmax and POD.
- Quantifying uncertainty in quantities like Cmax and the POD can be helpful to determine when a safety decision can be made with confidence, or when more refinement is needed.

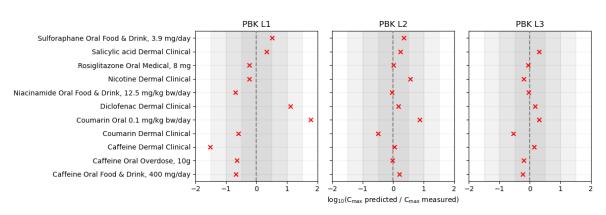
Strategies in addressing uncertainty and variability in PBK model predictions



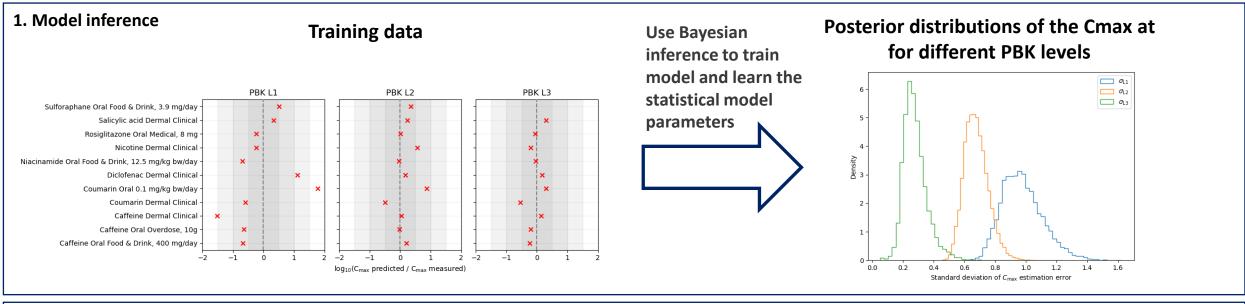
Uncertainty in PBK model predictions, comparing predicted and observed Cmax

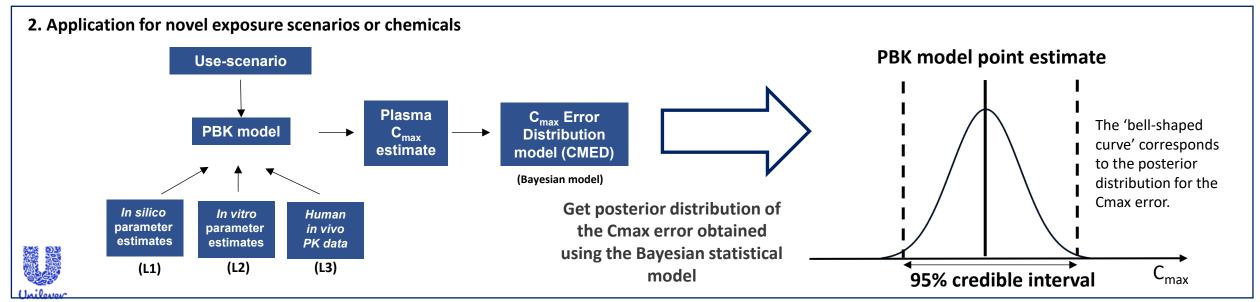

 L2: Cmax predicted within 5- to 11-fold of observed Cmax values.

L1: uncertainty is higher.

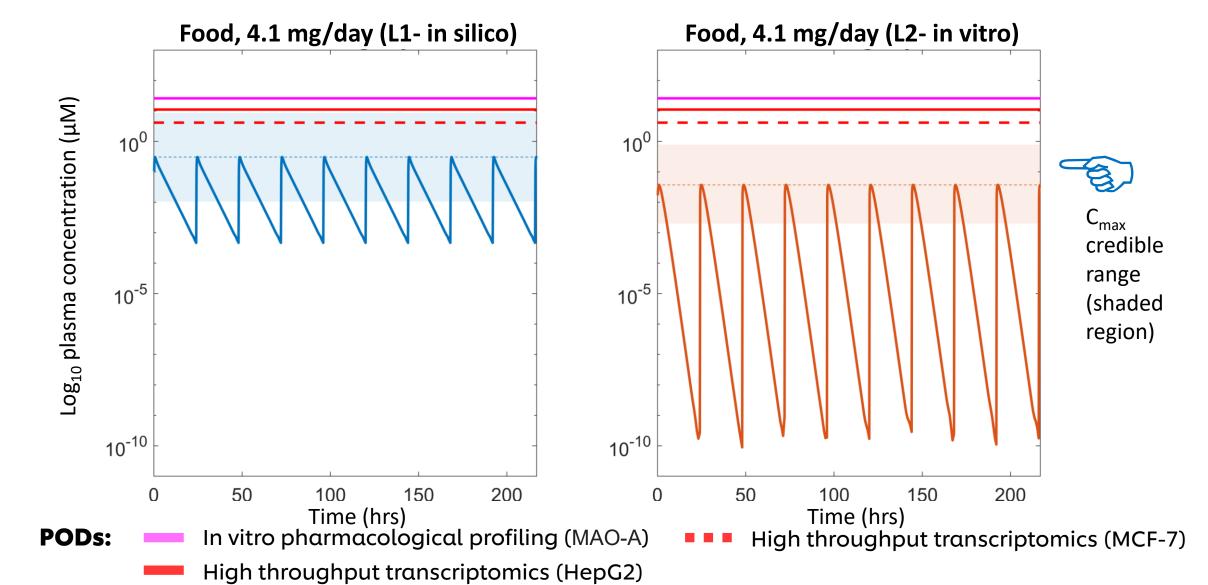

 Note: human kinetic studies also vary from each other.

Geci et al (2022), *Arch Tox*, Volume 99. (In silico, Level 1)


Punt et al (2022), *Altex,* Volume 39, Issue 2 (In vitro, Level 2)



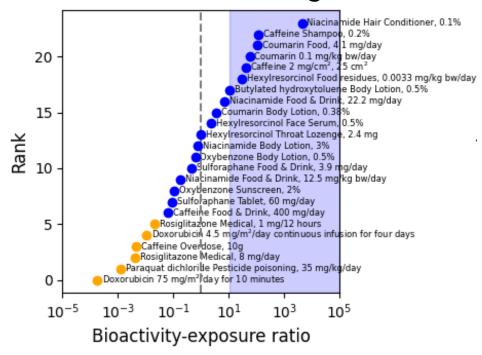
Middleton et al (2022), *Tox Sci,* Volume 189, Issue 1 (Level 1, 2 and 3)



Bayesian modelling of the PBK Cmax error

Adding credible range to exposure estimates

Evaluating the systemic safety toolbox across a wide range of chemicals and exposure scenarios


Selection of chemicals and exposure scenario

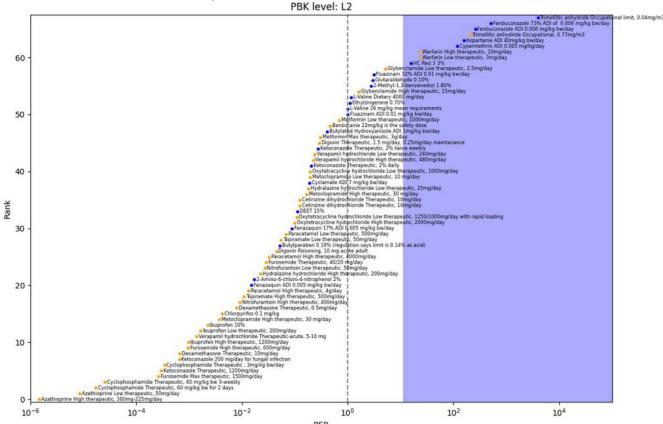
- Chemicals with well-defined human exposures
- Traditional safety assessment available

Chemical	Exposure scenario	Risk classification
Oxybenzone	2 scenarios: 0.5%; 2% sunscreen	Low risk
Caffeine	2 scenarios: 0.2% shampoo & coffee oral consumption 50 mg	Low risk
Caffeine	10g – fatal case reports	High risk
Coumarin	3 scenarios: 4 mg/d oral consumption; 1.6% body lotion (dermal); TDI 0.1 mg/kg oral	Low risk
Hexylresorcinol	3 scenarios: Food residues (3.3 ug/kg); 0.4% face cream; throat lozenge 2.4 mg	Low risk
ВНТ	Body lotion 0.5%	Low risk
Sulforaphane	2 scenarios: Tablet 60 mg/day; food 4.1-9.2 mg/day	Low risk
Niacinamide	4 scenarios: oral 12.5-22 mg/kg; dermal 3% body lotion and 0.1 % hair condition	Low risk
Doxorubicin	75 mg/m2 IV bolus 10 min; 21 days cycles; 8 cycles	High risk
Rosiglitazone	8 mg oral tablet	High risk
Paraquat	Accidental ingestion 35 mg/kg	High risk

10 chemicals - 25 exposure scenarios

PBK Level 2, Blue shaded region BER> 11

BER=lowest POD/Plasma Cmax


Blue: low risk chemical-exposure scenario

Yellow: high risk chemical-exposure scenario

Extended evaluation (38 more chemicals)

PBK Level	BER threshold	Empirical Protectiveness	Empirical Utility
1	110	43/46 (93%)	2/24 (8%)
2	11	43/46 (93%)	6/22 (27%)
3	2.5	40/41 (98%)	0/3 (0%)
Highest	-	44/46 (96%)	7/24 (29%)

- Chemical- Exposure scenarios not protective for:
 - Warfarin therapeutic oral dose
 - Trimellitic anhydride inhalation exposure
- Further research is being performed to explore additional relevant in vitro (tier 2) assays to be combined with the toolbox.

The NEW Gold Standard

Was:

- Rodents
- Pathology
- High-dose apical endpoints
- No adverse effect level
- Uncertainty factors

Is Now:

- Human focused
- Broad-based NAMs
- Bespoke new NAMs
- Exposure led (PBK)
- Bioactivity not pathology
- Protection not prediction
- Underpinned by Computational modelling

Thanks

Alistair Middleton

Maria Baltazar

Matthew Dent

Sophie Cable

Paul Carmichael

Hequn Li

Nicky Hewitt

Beate Nicol

Joe Reynolds

Sophie Malcomber

Sharon Scott

Jade Houghton

Predrag Kukic

Andrew White

Richard Cubberley

Sandrine Spriggs

Ruth Pendlington

Adam Wood

Katie Przybylak

Eurofins

BioClavis

Cyprotex

Thank You

sers.unilever.com

